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A numerical algorithm for sglving the Ornstein-Zernike {0Z) integral
equation of statistical mechanics is described for the class of fiuids
composed of molecules with axially symmetric interactions. Since the
OZ equation is a nonlinear second-kind Fradhohn equation whosao key
featuro for the class of problems of interest is the highly computa-
tionally intensive natuie of the kernel, the general approach employed
in this paper is thus potentially useful for similar problems with this
characteristic. The algorithm achieves a high degree of computational
efficiency by combining iterative linearization of the most complex
portion of the kernel with a combination of Newton—-Raphson and
Picard iteration methods for the resulting approximate equation, This
approach makes the algorithm analogous to the approach of the
classical Gauss-Newton method for nonlinear regression, and we call
our method the GN algorithm. An example calculation is given
ilustrating the use of the algorithm for the hard prolate ellipsoid fluid
and its resuits are compared directly with those of the Picard iteration
method. The GN algorithm is four to ten times as fast as the Picard
method, and we present evidence that it is the most efficient
general method currently available. € 1994 Academic Press, inc.

1. INTRODUCTION

The Ornstein-Zernike (OZ) equation Is a nonlinear
Fredholm second-kind integral equation emploved in the
statistical mechanics of fluids to compute their microscopic
structure from a description of the underlying intermole-
cular forces. The principal structural quantity of interest 1s
the pair correlation function, g{12), which is proportional
to the probability of observing a pair of molecules 1 and 2
at given relative distance and mutual orientation. Theories
based on the OZ equation for gi12), and on closures such
as the Percus-Yevick (PY) and hypernetted chain (HNC)
provide a standard route to the structure of fluids [ 1].
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In the case of simple fluids {those with spherically
symmetric intermoelecular potentials) the equation involves
a one-dimensional integral, whereas for molecular fluids
(those for which the intermolecular potential depends on
relative orientation in addition Lo distance) the integral is in
general five-dimensional. Solving the OZ equation for
molccular Muids is thus much more difficult than for simple
fluids. For most systems and closures the equation must be
solved numerically, typically following discretization and
conversion to a set of nonlinear {ranscendental equations.

For the discretized OZ equation, the full Newton-
Raphson (NR) method, although possessing good
convergence properties, is usually unsuitable due to the
large numbers of unknowns involved, and the most often-
used method of solution has been the Picard iteration
method in configuration space [ 2] or in Fourier space ( PF)
[ 3].Picard iteration has the disadvantages that convergence
is typically slow, uncertain, and sensitive to the initia
estimate. For simple fluids (for which g(12) = g{r,,)}, more
powerful numerical procedures have been developed, which
remove the inherent convergence problems of Picard
iteration [4-10].

Only for the simplest molecular fluids, those composed of
axially symmetric (linear) molecules (for which g{12)
depends on one distance and three angular variables), have
general numerical methods of solution of the OZ equation
been developed. The first such method was proposed by
Lado [ 1], based on the earlier work of Blum [12] and of
Chen and Steele [ 13]. It consists of expanding the correla-
tion functions in spherical harmonics, writing the OZ equa-
tion as a set of nonlinear equations in Fourier space, and
solving these by the PF method. A similar procedure, also
based on the spherical harmonic expansion and the PF
method, was proposed by Fries and Patey [14, 15]. An
improvement to this algorithm has been recently described
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by Kinoshita and Harada [16], which partially incor-
porates the NR methed in a manner similar to that
proposed by Gillan for sitmple fluids [5]. Finally, an
approximate method based on interpolation of the pair
distribution function at a small number of specific orienta-
tions has been proposed by Lago and Sevilla [17], who
employed Picard iteration in configuration space. All these
approaches are very computationally intensive.

The purpose of this paper is to describe the details of an
efficient numerical algorithm for solving the OZ ¢quation in
conjunction with an arbitrary closure relation for linear
molecular fluids. The algorithm is a generalization of that
proposed for simple fluids by two of the present authors
L6]. Due to its relationship to an approach used in non-
linear regression problems, we call our algorithm the GN
(for Gauss-Newton) method. We have recently used this
algorithm to study several OZ closures for a number of
different molecular fluids, including hard homonuclear
[ 18, 19] and heteronuclear [ 207 diatomics, hard trigtomics
[21], hard prolate [22] and oblate spherocylinders [ 23],
hard prolate ellipsoids of revolution [24], Lennard-Jones
diatomics [25], and hard quadrupolar diatomics [ 26]. We
believe that the approach of the GN method is capable of
being used in the context of the numerical solution of other
nonlinear integral equations.

In the next section, we consider the basic relations
involving the Ornstein-Zernike equation and the correla-
tion functions in the case of linear molecules. In the
following section, we discuss’ the main steps involved in
implementing the PF method and focus on the most time-
consuming steps in the case of molecular fluids. The next
section describes the GN algorithm, which seeks to decrease
the computation time involved in these steps, as well as to
improve its convergence properties. The final section
presents a numerical example of an implementation of the
GN method and directly compares it with an implementa-
tion of the PF method of Lado [117. Finally, we compare
the GN algorithm with other available methods and discuss
possible modifications and extensions of our approach.

2. THE OZ EQUATION FOR LINEAR
MOLECULAR FLUIDS

The OZ equation in Fourier space is given by

p12)= 2 [a13)[a32) + 7301 des, (1)

where Q = ] dw, and p is the number density. Tilde’s denote
Fourier transforms of the direct correlation function, ¢(12),
and the series function {12) = A{i2) — ¢(12), where A(12) =
g(12)—1 1is the total correlation function. For linear

molecules, £2 = 4x, and the pair correlation functions X{12)
may be expressed as

X(12) = X(r, @, 0,) = X(1, 0,, 82, ¢,5), (2)
where r=r,, is the distance between respective reference
points in molecules 1 and 2, w,=(68,, ¢,) is the vector of
angles defining the orientation of the molecular axis of
molecule 7 with respect to the axis joining the reference

points, and ¢,,=¢,—¢,. The OZ equation must be
coupled with a closure, which may be written in general as

e(12) = exp[ — fu(12) + p(12) — B(12)] — 1 — (12}, (3)

where f=1/kT, u(12) is the intermolecular pair potential,
and B(12} is the bridge function, the particular form of
which implements the closure.

The correlation functions X(12) may be expanded in
normalized spherical harmonigs,

X12)=4z Y ¥ T Xypalr)

h=0h=0m=—n

X Yn'lm(gls é,) Y, a6z, ¢2), (4)

where n=min(/,, [,), and #i= —m. The harmonic coef-
ficients are given by

Yo =4] [ [

—n

X X(12) Yy, (01, 6.} Yi,.(6,, 6,).

dcos 8, dcos 8, dip,

(5)

The Fourier transforms, ¥(12), of the correlation functions
may be also expanded in spherical harmonics,

Y(12)=4n§ )af Z X

h=0 h=0 m=—n

X Yi,k00, 91} Y, m( 8, ¢5), (6)

where k = k,,. The OZ equation (1) may be written in terms
of the harmonic coefficients of ¢ and 7,

?I] fzm(k.) = ( - )m P z Eh!}m(k)

Ii=m

X [Ef3n’zm(k) + jj[][zm(k)]' (7)

Finally, it is convenient to use the correlation functions
C(12) =re(12), C(12) =k&(12), I'(12) = rp(12), and =
7(12). Equations (3) and (7) then become, respectively,

C(12y=rexp[ —fu(12) + I(12)/r — B(12)] —r—I{12)

(8)
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and

(ﬁ,)c p 13§m éll hm(k)

X [Clg,n'zm(k) + f'.';.'zm(k)]-

fh fzm(k) =
(9)

3, PICARD ITERATION FOR SIMPLE
AND MOLECULAR FLUIDS

In this section we summarize the Lado version of the PF
method [11] with some minor modifications, in order to
motivate the GN algorithm.

The variables r and & are discretized at values r;=7 Ar,
ky=jdk; i j=1,.,N, where drdk=n/N for some
appropriate choice of mesh sizes 4r, 4k, and truncation limit
N. Similarly, the harmonic coefficient indices are truncated at
limits L, L,, M. In a typical case considered later in this
paper, N=1024, Ar=001, L, =L,=6, M=4 The OZ
equation {9) with the closure (8} then becomes a set of non-
linear transcendental equations in the values of the unknown
harmonic coefficients in real and Fourier space at the grid
points {r,, k;}.

The PF method starts from an initial estimate of I, (k)
and each iteration consists of the following four steps:

(i) Transformation to configuration space, I’y ,,,(k;} —
Iy, nm(ry). First, the harmonic coefficients T, (k;) in the
intermolecular coordinate frame are transformed to har-
monic coefficients [ (k;; 1,1,1) in the space-fixed coordinate
frame. Then inverse Hankel (Fourier—Bessel) transformation
is performed to obtain I'(r,; {;1,/). These are then transfor-
med to the coefficients I'y ,,.(#;) in the intermolecular coor-
dinate frame The procedure is described in detail in
Ref T'11]

(i) Closure, Typnlr;) = Cypmir,). The harmonic coef-
ficients C; 1, m(r;} of C(12} are calculated from I'y,,,,.(7;) using
the closure equation (8§},

1 1 1 n
Conmlr)=1] 1]_{]) dcos 0, d cos 0, dp,,

X Yllrﬁ(gl! 1) Yp,(0,, 65)
x {r;exp[ —Bu(12) + I(12)/r;— B(12)]

—r,— 12}, (10}
where 712} is obtained from 77, ,,,(r;}, using the spherical
harmonic expansion (4).

(iii) Transformation to Fourier space, C,,(r)—
Chumik;). The harmonic coefficients C,,,(r;) are-trans-
formed to the coefficients (k). The procedure is
analogous to that of step (i).

(iv) Use of the OZ equation, é,ﬂzm(kj):» f,l,zm(kj). The
set of linear equations (9) is solved for the I} ,,.(k,}.

ET AL.

The final results I” of step (iv) above are taken as the initial
estimate for the next iteration in step (i).

We remark that, in practice, a relaxation parameter
A€(0, 1) is sometimes also incorporated to improve con-
vergence in difficult cases, by means of which the estimate on
the next iteration is taken to be the initial estimate plus a fac-
tor A of the difference between the final and initial results of
the basic Picard iteration step described above. Since such a
procedure may be incorporated into any numerical algorithm
(including the one described in this paper), we do not con-
sider it to be a distinguishing feature of the basic algorithm
itself. We briefly mention the use of relaxation parameters in
the discussion at the end of the paper.

The PF method of solution described above is formally
identical to the PF method used for simple fluids, with the
only formal difference being the absence of spherical har-
monic expansions in the latter case. However, the relative
computation times required for each of the steps in a single
PF iteration differ considerably for the two types of fluids.
For simple fluids, the most time-consuming steps are (i) and
(iit), the calculation of the Fourier transforms, while steps (ii)
and (iv) are computationally trivial. For molecular fluids, the
computation of Hankel transforms in steps (i) and (iii)
{(including recalculations between coordinate frames), while
more complex than the calculation of Fourier transforms in
the case of simple fluids, consumes only a small fraction of the
total computation time per iteration. Similarly, step (iv) does
not greatly add to the complexity of the calculation in the
case of molecular fluids. Step (ii) is by far the most time-con-
suming, since it involives calculations of the three-dimen-
sional integrals in (10) for ~ 1000 intermolecular distances r;
and for more than 20 harmonic coeflicients. Thus, a prime
candidate for improving the efficiency of the PF algorithm in
the case of molecular fluids is to reduce the number of times
that step (i1) must be performed.

In addition, we emphasize that a known general deficiency
of the PF method is its inherently poor convergence. It
requires a good initial estimate and convergence is generally
slow and/or uncertain. For example, it is not unusual for the
PF method to require ~ 100 iterations at high densities and
to be divergent at some state points, even for a very good
initial estimate and use of relaxation parameters (e.g.,
[15, 16]). This, of course, is also the case for simple {luids,
but it i3 much more crucial for molecular fluids, due to the
greater complexity of the calculations involved.

4. THE GN ALGORITHM

Equation (9) must be solved numerically at a set of
discretized values k,. Use of the full NR method on the
resulting set of nonlinear algebraic equations would provide
rapid convergence, but this is impractical due to the large
numbers of variables involved. For example, 28 harmonic
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coefficients and ~ 1000 values of k; would result in a set of
~ 28000 linear equations, with millions of elements in the
coefficient matrix.

Our algorithm is motivated by the fact that each iteration
of the full NR procedure applied to (9) involves two
separate linearizations, followed by the numerical solution
of the resulting set of linear equations. Equation (%) may be
written symbolically as

=1, T (11)

Each iteration of the full NR method involves linearizing
both the “inner” nonlinearity C(i') and the “outer”
nonlinearity . The inner nonlinearity involves the closure
relation and the outer nonlinearity involves the OZ equa-
tion itself. Our algorithm focuses on the inner linearization.
As a consequence, it may thus be considered to be in the
same spirit as the Gauss—Newton method for nonlinear
regression [27], and we accordingly call it the GN
algorithm.

Each iteration of the GN algorithm consists of two
separate stages. The first stage involves linearization of the
closure relation (8). When substituted into (9), this results
in a modified OZ equation, which we call the lincarized-
closure Ornstein-Zernike (LC-OZ) equation. This
linearization step is the essential feature of the method, and
it will be shown that use of this equation results in a
considerable time saving as compared with use of the OZ
equation using the full closure (10}, as in step (ii) of the PF
method. The sccond stage involves discretizing and numeri-
cally solving the LC-OZ equation. Although this can be
implemented in a number of ways, we describe here an
efficient procedure based on a combination of NR and
Picard iteration.

4.1. Linearization of the Closure and the LC-OZ Eguation

We denote initial estimates by the superscript in. The
closure relation (8), expanded to first order about the initial
estimate gives

C(12) = C""(12)+¢v""(12)[]"(12) —F”’(lZ)], (12)
where
e (BC112)
¢ “”‘(ar(lz))ﬂ
. ) aB(12
= [C"(12) + I"(12))fr — (arglzz)
x [C7(12) + T'"(12) +r]. (13)

The derivative ¢**(12) depends on the chosen theory, ie., on
the approximation used for B{12). For example, the PY
closure (B{(12)= I(12)/r—In[ i + I'(12)/r]) gives

¢"(12y =exp[ — fu(12)] — 1.

In the case of closures for which B(12) does not depend on
{12}, such as the HNC, reference HNC [28] and NSB
[ 18] closures, the last term in (13) vanishes.

The linearization (12) allows C; ;,,(r) io be obtained by
means of Parseval’s theorem {291,

Cfln’zm(r)
= Cllumlr)
Q21+ D20+ DG+ DL+ 1)
XX [ oA
BEm mt ! 2
*x CUV I m'm"m) C{LL1T L5 000)
x C{I410L m'm"m) C(151515; 000)
X ¢§?z§m'(”)[rf,"f;m"(") - F:;:'l'[z”m"(r)]?

(14)

which may be written symbolically as

C;":Igm(r) = Cin

Hizm

N+ 2 & b, myI'm" )

irEme

x [Fﬁ'fz"m"(r)_Fj?'(z"m"(r)]: (15)
where superscript * is used to denote the linearized
quantitiés. The summations are performed over /4, I{, [3,
m', m" for all nonvanishing Clebsch-Gordan coeflicients
Clijk ; Imn).

Substituting (15) in the OZ equation (9) gives an
equation for the corresponding linearized harmonics I'*,

Tty ==L § k)

hi=m

x [ Climlb) + T h (k) ], (16)
which we call the LC-OZ equation. Each main iteration of
the GN algorithm involves the solution of the LC-OZ
equation (16) for f}f;zm(k) at a set of discretized values
{k;=jdk, j=1, ., N}, using (15). Use of the linearized
closure {15) instead of the full closure {10) makes (16) much
easier to solve than the full OZ equation (9).

The GN method proceeds from an initial estimate I,
and C”(12) and ¢™(12) are then calculated from (10) and
(13), respectively. The coefficients « in {15) are determined
from (14), and (15} is substituted into the LC-OZ equation
(16), which is solved by the method described in the next
section. The resulting solution 7'* is used as the next
estimate, I, and the procedure is repeated until numerical
convergence is achieved.
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4.2. Efficient Solution of the LC-OZ Egquation

The GN method consists of the iterative solution of the
LC-0OZ equation {16), which is a set of coupled quadratic
equations in I ramlk;). A particular implementation of the
method requires the use of a numerical algorithm to solve
this equation. The overall behaviour of the GN methods
depends critically on the efficiency of the method chosen.

When discretized at a set of values k;, application of the
full NR method to the LC-0Z equation remains imprac-
tical. The method proposed previously for simple fluids [ 6],
using a combination of NR and Picard iteration, was shown
to be very efficient. Here we follow a similar approach. We
describe the procedure for correlation functions in the
centre-centre molecular coordinate frame. The relevant
formulae in the site-site coordinate frame are given in
Appendix B.

Each iteration for solving the LC-OZ equation consists
of two separate steps. First, the full NR method is used for
the most important (primary} solution components, which
we take to be the first J values of the two leading harmonic
coefficients, I'%o(k;) and F(k,), j<J. The unknowns
T olky), I Jwlk;), j>J, and the higher harmonic
coefﬁcwnts I T umlk;) are kept constant during this stage.
Following convergence of this procedure, the second step
consists of a single Picard iteration on (16) to adjust the
remaining {secondary) harmonic coefficients, using values
of the primary 2J unknowns obtained from the NR step.
This two-step iteration is then repeated until convergence is
achieved for the entire LC-QZ equation (16). By means of
this technique, we only use the full NR method on the
LC-OZ equation for the most critical 2J solution
components, and we use Picard iteration for the less critical
harmonics. This avoids the construction and solution of the
large sets of linear equations that would be required to
implement the full NR method for all the harmonics, while
retaining some of its desirable convergence characteristics.

The details of the first (NR) steps are as follows. The
LC-OZ equation (16) for the first J values of Fx Joolf;) and
I$,(k;) may be written

Fll) = —Tuld) + | b ) ) + Ttk
+ Clulh )L Cholk) + Tiolk)]
+ 3 ool ) otk + Ttk
=0,l= j=12 .0, (17)
Fitk) = =Pl + | E3ulb) Ca) + Tl

+ Cholk [ Choolk) + Thoolk))]

+ Z 1320(1{ )[CI300 (k )+FI300 k)]}
=4
, J

e

j=12,.

ET AL.

Using a superscript ¢ to denote evaluation at an initial
estimate and keeping the final summations in (17) fixed, the
NR equations resulting from (17) are

OF (k)

m) [P dolkn) — T ooolkm)]

Fykp)+ Y (

m=1

M/ BFy(k) ) )
+ 2 (i) o T en) = Pt
=0, j=12, .,/
(18)
7 oF(k;) ) -
0 1 * Al k
Fik)+ 3 (a%(k ) P ln) Tt
I oF k) .
“ T (SR} 7Sl = )]
=0, j=12,..,J,

where the elements of the Jacobian matrix are obtained
from (17) as

( aF (k) )
6f6"00(k,,,) o

=5, [— 1+2 C‘gm(k,)]

aéOOO(kj) )
afﬂﬂﬁ(km) Fin
8Cmlk; ))
arooo( ) v’

' f (28k)+ Tl
£ 8%tk + Ttk (

2F (k)

(——" )
af;:oo(km) ro

S 2 Clk)
J
2ol
O sollen) ) 1+
Sl
6 sollin)/ 74"

+§ (288,000 + Tk ;)] (

[26200( 3+ i) (
(19)
OF (k)

(5I~”§m(km))r°

=t —1 42l |
P 0 aCZOO(kj))
+EJ[C (k)+rooo( ')+6220] (af'z—oo(km) -
aCOOO(kj)

P =0
+ = C%(k; ( — ) .
k_f 200( J) arzoo(km) Tin



NUMERICAL SOLUTION OF THE OZ INTEGRAL EQUATION 17

aF (k) )

ai‘m(,(k

— L
k

s 200(k;)

+ TC%ulk) + Calk )1(56”dk))fm

arOOU( ]
C 00l i,
+fé 2 (G205
; ooolk )/ 7in
where &, is the Kronecker delta. For the derivatives

appearing on the right-hand side of (19), the superscript *
has been dropped and the subscript '™ in used rather than
I°. These result from linearization of the closure and the
fact that all other harmonic coefficients are kept fixed.

Finally, the Hankel transforms for the first two harmonic
coeflicients needed in the evaluation of (18) and (19) are
given by

8Comlk;) )
or’ ooo(k )/ pn
T ok ]
aC‘ooo k)
0T 00k ,)

J
Chw)éwm+2(

x [P0k ,) —
+ T (FED) [Pl = )
| (20)

. I 0, 00lk;
6300(19-) = arznuo(kj) + Z (ﬁ.z—w((l;‘)‘i) i
m=1 000\ "

x [rgoo(km)‘rg::)o(km)]

tE <afzm(km))rln[f‘w"(k’”)_rzoo(km)]-

m=1
The formulae for the derivatives 5Cpm(kj)/8fqm(km),
p,q=0,2, appearing in (19) and (20) are given in
Appendix A.
The overall GN method thus consists of two main itera-
tion loops, and the details of the method are summarized as
follows:

Construction of the New LC-0Z Eguation (Outer Loop).

1. Theinitial approximation I"{", _(k),j=1,2, ...
chosen.

2. (), i=1,2, .,

Hanke! transforms.

3. Given «(12) and B(12), C7, .(r,) are calculated

from {10).
4. The Hankel transforms C7', (k) are calculated.

B 5. The right-hand side of Eqs. (9) are calculated as
rf] l'zm(kj)'

N, is

N, are calculated from their

6. Test of convergence:

I"m

hbhm

1 X -
er Y [ynmlk) — (k) <e

Jj=1 fjlam

If the inequality holds, convergence of the entire procedure
has been achieved. If not, calculations are performed in the

inner loop. In the latter case, set fz‘,zm=f,l,2m,

j=1,2,..N

Newton—Raphson iterations for primary solution components
of the LC-0OZ equation ( first step of inner loop),

7. The harmonic coefficients ¢7,,.(r,) of ¢"(12)
that appear in (14) are calculated by means of (13).
The derivatives (6C‘p00(kj)/8f qoolk Dy p,g=0,2, are
calculated according to formulae (A7) in Appendix A.

8. Set I'), (k)=T}, (k) j=1,2,., N

9. The elements of the Jacobian matrix (19) are
calculated, with Coo(k,) and 'y (k,) obtained by (20).

10. The set of 2J linear equations (18) is solved for
Toolky), Tholk,), j<J.

I1.  Test of convergence:

1/ -
} z 000 Fgoo(k,-)]z

Fgoo(kj)]z <ENR-

J
Z P 3olk ) —

If the inequality is satisfied, convergence of the NR step has
been achieved. In this case, the remaining I Fumlk;) are
calculated in the Picard step. If convergence has not been
achieved the algorithm returns to step 8.

Picard iteration for secondary solution components of the
LC-0Z equation (second step of inner loop).

12. New I'f,.(r;) are calculated as inverse Hankel
transtorms.

13. Corresponding Cf,,(r,) are calculated from (15)
using I'},,,.(r,) obtained in step 12.

14. The Hankel transforms CF,,.(k ) of CFyiry)
determined in the previous step are calculated.

- 15. The right-hand side of Egs. (16) are calculated as
I} pmlky).

16. Test of convergence:

= Z Y [Tk

_,l=l filam

f|12m( j)]z < ELCs

where the inner summation is over ali /,,/,, m. If the
inequality is satisfied, convergence of the entire inner itera-
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tion loop has been achieved. The results are taken as the
new initial estimates I}, (k) and the algorithm returns to
step 2 above. If convergence has not been achieved the

algorithm returns to step 8.

5. RESULTS AND DISCUSSION

We compared the efficiency of our GN algorithm with
the PF algorithm of Lado [11]. For illustration, the
comparisons were made for a fluid of hard prolate ellipsoids
of revolution having a length-to-breadth ratio of 3, and we
considered the HNC closure, B(12) =0 in (3). The correla-
tion functions were expanded in 28 spherical harmonics
{000, 200, 220, 221, 222, ..., 664). The numerical calculations
were carried out using N =1024 points with mesh-sizes
Ar=001, Adk=n/(N Ar). For the GN algorithm the
number of values of the 000 and 200 harmonic coeflicients
obtained by the full NR method in the inner loop was
J=280, and we used the convergence criteria &~ 1077,
eng~ 1072, and e, c~5-10 3 in steps 6, 11, and 16, respec-
tively. We used the same value of ¢ to indicate convergence
of the PF algorithm. The integrals in Eq.(10) were
calculated using the following product integration scheme:
an adaptive extended Gaussian quadrature rule [30] with a
maximum of 33 points was used for integration over cos &,
and cos #,; integration over ¢,, was performed using an
adaptive trapezoidal rule with a2 maximum of 64 points.
{These integrals were evaluated only in the region of
nonvanishing Boltzmann factor, exp[ —pfu(12)], deter-
mined according to the technique of [ 31 ]). The FORTRAN
compiler on the HP-Apollo 9000/730 computer was used
for all calculations.

Table I shows a comparison of the GN method with the
PF method. We used the ideal gas initial estimate
(i, (k) =0) for the lowest density, and the results for the
nearest lower density was taken as the initial estimate at
higher densities. The times required for each method are
compared in Table I, as are the number of iteration steps,

TABLE I

Comparison of the Computer Time, ¢, and the Number of Itera-
tions, N,,, of the GN and PF Methods for Numerically Solving the
OZ Equation for the Hard Prolate Ellipsoid Fluid Using the HNC
Approximation

Present method PF

n le !,"S N,-, I[S
0.1 3 219 12 976
0.2 4 320 22 1958
0.3 5 431 39 2990
04 [ 550 66 5250
045 5 492 69 5622

ET AL

N,. For the GN method N, is the number of times the
LC-0OZ equation is solved (at each of which the C,,,,.(r,)
harmonic coefficients must be calculated from Eq. (10)).
Since most of the computation time for each method
involves the evaluation of Eq. (10), the ratios of execution
times to N, are comparable for each method. At low
densities our method is at least four times as fast as the PF
method and at high densities it is approximately 10 times as
fast.

We remark that the system of hard prolate ellipsoids of
revolution presents an especially difficult case for numerical
algorithms. The fluid apparently undergoes an isotropic-
nematic phase transition at a density slightly beyond the
highest density in Table I (see [ 24 ] for further discussion of
this point). We found both methods to be divergent beyond
n ~0.46. For other systems we have studied [17-257, we
have found both methods to converge slightly more rapidly.
However, the relative convergence rates were observed to be
similar to that in Table 1. Also, similarly as noted elsewhere
[ 15, 16], the PF method is sometimes divergent in cases for
which the GN method converges. For example, for hard
homonuclear diatomics, the GN method converges up to
n~047 [17, 18], whereas the PF method converges only
up to n ~ 0.42 (depending on the closure used).

The GN method is much more efficient than the PF
method, especially at high densities where the PF method
may fail to converge. Although direct comparison of the GN
method with other methods 1s difficult, we can make the
following remarks. For simple fluids [6], the GN method
has been found to be several times as fast as Gillan’s method
[5]. Since the method of Kinoshita and Harada [ 16] is the
analogue of the latter method in the case of molecular fluids,
we expect that the GN method is similarly better in this
case.

Possible improvements to the GN method as presented
here can be made by modifying the solution procedure used
for the LC-OZ equation or by incorporating well-known
numerical devices. One possibility with respect to the former
is the use of more than two leading harmonic coefficients in
the full NR step. However, the algebra invelved becomes
increasingly complex as this number increases. Another
possibility is to vary the value of J in the NR step.
Possibilities with respect to the latter include the use of
relaxation parameters (e.g., [9, 15, 16]) in either the outer
or inner iteration loops as well as the use of approximate
Jacobian matrices in the NR step (e.g., {8, 9]). However, we
expect that any of the above will lead to only relatively
minor improvements in the basic GN method.

The GN method is potentially useful in the investigation
of more complex theories of molecular fluids, such as the
RHNC theory [32,25] for soft-core linear molecules,
the implementation of which requires the calculation of
multiple numerical solutions of the OZ equation. Finally,
we believe that the GN method can be successfully extended
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to the more difficult case of nonlinear molecular fluids. In
addition, we believe that the general strategy of the method,
as embodied in the sequential linearization of Eq. (11), can
be successfully used in the numerical solution of other
nonlinear integral equations.

APPENDIX A

Here we derive the expressions for the calculation of
BC‘ olk)/OF ook ), p. g =0, 2 that appear in Eqs. (19) and
( 20) The derivatives of Cov 203 Cago With respect to T
and '3, may be expressed as

680tk _ & Casalhs) 8Conulr) L oolrs)
8L 000k ) n=1 @Co00(rn) 8L 000l ) aFO{)O(km)
aCODO(kj) - g aaooo(kj) Co00(r ) O 00(r )
5fzoo(km) =1 8Co00(7,) 2T 200(r,,) afzﬂﬁ(km), (A1)
66200(kj) _ o aCZOU(kJ) BC3p0(r ) O g00l ¥ )

afouo(km) —nz] 8C;00(rs) OF g0 r,) afﬂoﬂ(km),
aézoo(k;) - ud aéZOD(kj) FCa00(r,) 5r200(”n)-
af200(km) no1 0C00(r,) O 200( 1) afzm(km)

The derivatives 8C/0C on the right-hand sides may be
calculated from the defining equations for the discrete
Hankel transforms

N
COUO(kj) =4n Ar z Coaolr;)

i=1

krijolkrs),
N (A2)
Czoo(kj) =4r Ar Z Caoolr ) kst Jalk 1),

i=1

where j, and j, are spherical Bessel functions,

Jolx) =sin(x)/x,

i) = (3—x% sin(xg —3x cos(x)‘

X

(A3)

The derivatives 0C/8I" may be obtained from the
linearized closure equation (14), which becomes for the 000
and 200 harmonic coefficients

Cooolr)) = Ci{'oo(f,-) + Doolr N Iooolr:) — Ff;’m(r,-)]
+ Do rd Faolri} — Tipolrii 1,

Coop(r) = Czoo( )+ Dogle M Fgoolr) — Fi%(h)]
+ Dos(r M L a0olri) — Tige(r ) 1,

(A4)

where

Dolr;) =¢gl00(ri)
Doz("’j) = 2453’00(?,-)

_ (AS)
Dyolry) = ¢;‘0{J(ri)

Dy(r))= ooo(r )+“_.?"' (ra)-

Similarly, the derivatives 877/01" on the right-hand sides of
(A1) are calculated from the defining equations for the dis-
crete inverse Hankel transforms

ookt )+ Pinolrs) + 0%

Topol r)— Z f )kjrijo(kjr.i »
(A6)
Ak Y
ono(r)*—z 2ZF200 kr]z(k"s)-
j=1
Combining the above equations gives
aémo(kj) 2 X
— = Dol k; kory) kot jolk,,
T ootk NHZI 0o(#a) Kt Jol;r ) Kt JolKo ¥}
8Ca00lk; 2 y . .
PTO_OR(_L)# Z DG2 n) n.}O(kjrn)kmrn.}Z(km‘rn)
aFZOO(km) Nn 1 (A7)
OCaolky 2 X i .
af:{:):(k;) = Kr "52:—1 D2D(rn_) kjrnjz(kjrn) kmrnjﬂ(km rn)
aC‘m(kf) 2 X
R M CA—— Door ) kr ko, ko r, Jalk )
afzoo(km} Nngl 24F,) ¥ Ja ),r) Jok et )

APPENDIX B

In the text, the method of solution was described using
spherical harmonics in the centre—centre molecular frame.
In this frame only the harmonic coefficients X, with even
I, and !, are nonvanishing. The modification of the
GN algorithm for the site-site coordinate frame is
straightforwiird. The leading harmonic coefficients in this
frame are [k} and r wo(k;). For these the LC-OZ
equation (17} in Fourier space becomes

Foll) = — ool + 2 {Ca*m(k M ool) + Pk )]

— C?oo(kj)[emo(k )+F ol ;)]
£ T (=1 Claolk ) Choalhy) +F,m(rc>]}

=2

=0, J=1, ..,
(B1)

Fulk) = — [l + 2 {érm(k)[émtk)+rom(k,->]

+6110(kj)[6100(k)+r olk;) ]

~ Y (=18 C:;m(k,-)[r?r;oo(k,-)+f::m(k,)1}

=2

=0, =L .l
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The analogue of equation (18) is

o L K ) (7ot
Fil)+ £ (5 75 e nlln) = Pl

L [ BF(k) ) - 6
0 r -
+m§] (af‘mo(km) i"O[ lm(kM) Flm(km)]
j=12,..,J

) [ Fooalls,
o

[ 100k )

=0,

) % o F il
OF (k)

+ L

J
m=1 (afIOO(km) r
=0, i=L2 .7

where the elements of the Jacobian matrix may be expressed
from (Bl1) as

( OF (k) )
afODO(km) re

=4, [n 1+ f égoo(k,)]
5

+ Lkl + Pil)] (5200

8T ool k)
56100(’6,-))
af‘ﬂm(km f(‘n,

+2 tzé,m( )+ PO k)](

( 6F0(kj) )
afwo(km) sl

=0 5‘ C?m(kj]
7

—

3C0ulk,) )
5f100( m)

14 0 ' 3
% (2G5l + Flootk) (armo(km)) ’
( OF (k) )
O ool )/ o

=5 [— 1+2 C‘?m(kj)]
J

+2 1280 k) + PO (k)](
k;

0C olk;) )

[Coou(k.)+1" (k)+Cuo k)] (afm(km) -

2 ot (2t

(' 6F1(kj) )
afooo(k ) e

P
= 5Jmk cooo{k )

L[ 80h)+ Elh)] (9?—_@_))
j in

5f000(km) I
£ acooo(k)
+ Clalk )(arm(k,,,)) }

Finally, the analogue of Egs. (20) is

Conalhy = Ciol) + ¥ (‘36000(" ))

m=1 arooo(k)
X[FOOO(k )= f‘oook )]

L (0ol -
i Z (aftoo(km))fm [rmO(km)HrmD(km)]’

m=1

s (B4)
Cunll) = Clifk) + ¥ (gf;m(il))
000 mi/ P
x[f'uoo(km)— Lok, )1

4 aCIOO(kj) 7 = in
+ z (m)fﬂ [Floo(km)—['mo(km)].

The derivatives on the right-hand 51des of Eqgs. (B3) and
(B4) are

m=1

512‘2’2?%%2 Dostra) ke jotkyr ) Kt il ),
d B5
Bale) 2§ bbb barislrs
aafé‘:ozﬂ(f’i)) =%fi Dulra) kry jilkyr,) kot ik, r,),
where
it = S 20 (B6)
and
Doglr;) = doiolr.)
Doi(r;) =2¢5(r,) -

Dy(r)= ¢i]"oo(”f)

) 20
D7) = dooelrd — ‘?3110(")"?‘\/_

200(" )-
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